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Abstract:
Grain size distribution is one of the paleoenvironmental proxies that provide insight statistical distribution of size fractions 
within the sediments. Multivariate statistics have been used to investigate the depositional process from the grain size dis-
tribution. Still, the direct application of the standard multivariate methods is not straightforward and can yield misleading 
interpretations due to the compositional nature of the raw grain size data. This paper is a methodological framework for 
grain size data characterization through the centered log ratio transformation and euclidean data, coupled with principal 
component analysis, cluster analysis, and linear discriminant analysis to examine Quaternary sediments from Tövises 
bed in the southeast Great Hungarian Plain. These approaches provide statistically significant and sedimentologically 
interpretable results for both datasets. However, the details by which they supplemented the conceptual model were sig-
nificantly different, and this discrepancy resulted in a different temporal model of the depositional history.
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INTRODUCTION

Grain Size Distribution (GSD) is a paleoenvironmen-
tal proxy that provides information on depositional en-
vironments and processes (He et al., 2015; Zhang et al., 
2018). GSD firstly evolves during transport and deposition 
(Reading, 1996; McLaren et al., 2007). Numerous works 
have interpreted the depositional conditions based on GSDs 
by applying univariate statistical parameters. For instance, 
the median, mean, sorting, and skewness of the distribu-
tion (e.g., Folk and Ward, 1957; Visher, 1969; Blott and 
Pye, 2001; Fournier et al., 2014). The CM patterns where 
(C) is one percentile and (M) is the median grain size can 
help analyze the ancient and recent depositional processes 
(Passega, 1957, 1964, 1977). One of the methods to deter-
mine the grain size fractions susceptible to environmental 
changes is classifying the GSDs using the standard devia-
tion of the distribution (Boulay et al., 2003). These meth-
ods, however, depend on median diameter instead of the 
whole distribution, revealing relative and restricted infor-
mation on the distribution (Zhang et al., 2018).

The polymodal GSDs indicate the presence of individ-
ual subpopulations (Folk and Ward, 1957; Ashley, 1978; 
Flemming, 1988). Moreover, the polymodality also sug-
gests that the sediments were not well mixed in the suspen-
sion. Multivariate approaches to distinguish the subpop-
ulations of GSDs include, among others, cluster analysis 
(CA) and principal component analysis (PCA) (Sarnthein 
et al., 1981; East, 1985, 1987). However, the application of 
cluster analysis on GSDs focused on provenance studies 
and stratigraphic analysis. Furthermore, these studies used 
a few parameters, e.g., mean and standard deviation. These 
parameters provide limited information on the depositional 
conditions (Donato et al., 2009; Zhang et al., 2018).

Although statistical analysis is a useful tool for GSDs 
description, and PCA represents a crucial dimensionality 
reduction method (Palazón and Navas, 2017; Katra and 
Yizhaq, 2017). The direct application of such statistical 
techniques for analyzing GSDs is challenging because the 
grain size data is a typical compositional set (e.g., Aitchison, 
1982; Flood et al., 2015). The sum of weight percentages of 
the size fractions is 100%. Consequently, they do not form 
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an independent system (Aitchison, 1986; Flood et al., 2015). 
The definition of compositional data has gradually evolved 
from vectors of positive components adding to a given 
constant (e.g., Aitchison, 1982) to a new general definition 
based on equivalence classes (Egozcue et al., 2018). A com-
position is a set of multivariate vectors that vary by a scalar 
factor and have nonnegative components. Accordingly, the 
composition can be regarded as a vector of proportions with 
nonnegative components constrained to a K constant.

One of the crucial questions in statistical analysis is eu-
clidating the compositional constraint. A simple approach 
ignores compositional constraints (i.e., Euclidean data 
analysis approach) and treats the data as Euclidean (Tsagris 
et al., 2016). On this topic, there is another school following 
the work of Aitchison (1982, 1983, 1992). The followers 
of this school have suggested several transformations us-
ing the logarithms of ratios, or log ratios, to get solutions 
for the com positional constraints (e.g., Aitchison, 1986; 
Aitchinson et al., 2002; Pawlowsky-Glahn and Egoz cue, 
2001; Egozcue et al., 2018).

This paper aims to study the utility and geological inter-
pretability of the Euclidean and centered log ratio (clr) trans-
formation approaches coupled with cluster analysis, princi-
pal component analysis, and Linear Discriminant Analysis 
through investigating the GSD of oxbow lake sediments of 
Tövises bed from eastern Great Hungarian Plain.

MATERIAL AND METHODS

Tövises bed is located in the Pocsaj “gate” geologi-
cal and geomorphological system and Érmellék region in 

the eastern Great Hungarian Plain (Fig. 1). The topmost 
Holocene sequence of this region is characterized by loess 
sequences overlaid by alluvial fan deposits (Szöőr et al., 
1991; Sümegi and Vissi, 1991; Sümegi, 1993). Szöőr et al. 
(1991) suggested an age range of (40,000–45,000) BP.

Core samples

The core from the Tövises bed core exhibits bimodal 
and polymodal GSDs. The entire sequence is characterized 
by periodic intercalation of the sediments, albeit the core is 
composed of fine materials (clay to very fine sand) (Fig. 2). 
The upper part of the core contains coarse and medium silts 
intercalated with fine silt at the middle part. The second sec-
tion contains medium silt intercalated with coarse silt at the 
top and fine silt at the bottom. The middle part comprises 
fine and very fine silty medium silt followed by the alternat-
ing medium and fine silts at the bottom. The lower part con-
sists of alternating coarse, medium, and fine silts. The very 
fine sand and the medium silty coarse silt fractions change 
parallelly in the vertical compositional diagram. The very 
fine sand fraction forms five peaks in the sequence (Fig. 2).

Grain Size Analysis

Undisturbed 346 cm core sediments were stored at a 
constant temperature of 4ºC and sectioned into 346 discrete 
1 cm subsamples. Grain size analysis was completed at 
1 cm intervals, and the measurements procedure followed 
Konert and Vandenberghe (1997). First, the samples were 

Fig. 1. The location, geologic, and topographic features of the Tövises paleochannel and vicinity. (a): 1. Sandpit, 2. Peat, 3. Loess covered Pleistocene 
alluvial fan, 4. Ebéd-hill (Late Copper Age kurgan), 5. Laponya-halom (kurgan), 6. Canalized bed of Ér creeck, 7. Leányvár, Late Neolithic and Middle 
Bronze Age tell, 8. Loess, 9. Alluvia sediments); (b): 1. Sandpit, 2. Tövises bed (paleochannel), 3. Dirty roads, 4. Ebéd Hill (Late Copper Age kurgan) 
5. Laponya Hill (Late Copper Age kurgan), 6. Canalized recent Ér creeck, 8. Leányvár, Late Neolithic and Middle Bronze Age).
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dried at 55ºC. Then 30 ml Na2P6O18 solution was added 
to 0.6 g of the sample to disperse the particles. The grain 
size analysis was carried out in the Department of Geology 
and Paleontology at the University of Szeged, Hungary, 
using the Easysizer20 laser particle sizer instrument of 
OMEC company; with a measuring range: 0.1 to 500 μm 
and a repeatability error of less than 3%. The device uses 
54 built-in detectors based on the Mie scattering. After 
measurements, the GSDs were decomposed into grain size 
fractions following the Udden Wentworth scale (Udden, 
1914; Wentworth, 1922). The (D5), (D50), and (D95) pa-
rameters were determined to emphasize the finest, average, 
and coarsest sizes. The used nomenclature is: fine silty 
medium silt (= fine silt “less dominant” + medium silt); 
medium silty fine silt (= medium silt “less dominant” + 
fine silt); medium silty coarse silt (= medium silt “less dom-
inant” + coarse silt); coarse silty medium silt (= coarse silt 
‘less dominant + medium silt); very fine sandy coarse silt (= 
very fine sand “less dominant” + coarse silt).

Compositional Data and Log ratio Transformation

Compositions describe parts of a whole that contain 
relative information. Aitchison (1986) introduced composi-
tional data analysis for variables in closed number systems. 
The technique aims to avoid misleading interpretations 
based on spurious correlations. If there are p variables in 
the closed data, the log ratio transformation can be opera-
tional in (p – 1) dimensional space, allowing unconstrained 
multivariate analysis (Aitchison, 1986; Pawlowsky-Glahn 
and Buccianti, 2011). For a dataset consisting of J compo-
sitional parts, various log ratio transformations have been 
suggested, including the additive log ration (alr) trans-
formation, which has been used since the early work of 
Aitchison (Greenacre et al., 2019). The centered log ratio 
(Aitchison, 1986) is the log ratio between a part (x) and the 
geometric mean of the entire set (gD(x)):

 

Fig. 2. Graphical depiction of the core description, along with the compositional chart of the cumulative percentages of the grain size fractions.



86 A. ELTIJANI et al.

Regarding the applicability of the standard multivar-
iate methods in the clr-transformed compositional data, 
Buccianti et al. (2006) were aware that the covariance ma-
trix for clr-transformed data is singular. However, Egozcue 
and Pawlowsky-Glahn (2016) showed that the clr transfor-
mation does not require an appropriate statistical method 
to evaluate and interpret the data. Following this view, this 
study applies standard cluster analysis and principal com-
ponent analysis for the clr-transformed data.

Applied multivariate statistical methods

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that sum-
marises information from a large dataset into small vari-
ables that retain the most information from large datasets. 
Detailed descriptions of PCA can be found in several text-
books (e.g., Agterberg, 1974; Davis, 2002). PCA allows 
consideration of the relationships (illustrated by the cor-
relation matrix) among variables. The process generates 
new variables called principal components (PCs), and each 
PC describes a percentage of the total variance in the data. 
This percentage is interpreted as the portion explained by 
the process represented by the PC. The first PC is highly re-
lated to the original variables than the second, and the sec-
ond PC is more related to them than the third component. 
To determine the number of PCs to be considered, we used 
the Kaiser criterion (i.e., retention of PCs whose eigenvalue 
is greater than 1), and scree plot criteria.

The crucial point of PCA is that the PCs can be linked 
with geological processes, showing groups of variables that 
might not be observed by other means. The interpretation 
of the PCA results aims to reveal processes (in the present 
case, the transportation processes) that cause the correla-
tions between the PCs and the original variables (Davis, 
2002; Szilágyi and Geiger, 2012).

Cluster Analysis

Cluster analysis aims to identify group structure 
amongst the cases. The fundamental criteria applied in 
the partitional clustering are homogeneity and separation. 
Homogeneity means that the two arbitrary objects that be-
long to a cluster are sufficiently similar, while separation of 
clusters means; that the two arbitrary objects that belong to 
different groups are sufficiently different. Gordon (1999) 
gives a comprehensive general reference. The clustering 
algorithms are categorized as hierarchical (agglomerative 
or divisive) and nonhierarchical (optimal partitioning) 
methods. In the present work, the hierarchical agglomera-
tive algorithm was applied, in which the objective function 
was defined by Ward’s minimum variance method (Ward, 
1963). In this method, the sum of squared distances be-
tween objects and the cluster’s center, to which the objects 
belong, is minimized. The similarity coefficient measuring 
the closeness between any two input sample points was the 

squared euclidean distance. This study applies hierarchical 
clustering because the dendrogram could depict the hierar-
chy of the fluvial system sub environment. The validation 
of the clustering results poses some difficulties as the clus-
tering itself (Pfitzer et al., 2009). There are ‘internal’ and 
‘external’ approaches to the evaluations, but they have a lot 
of uncertainty (Feldman and Sanger, 2007). That is why a 
geological criterion (the Passage’s CM diagram) is applied 
to check whether the result can be interpreted from a sedi-
mentological point of view.

Linear Discriminant Analysis (LDA)

The discriminant analysis aims to help distinguish be-
tween two or more groups of data based on observed quan-
titative variables. The LDA model was developed in 1936 
by Fisher (1936) for categorizing objects from a set of inde-
pendent variables in one or more sets of mutually exclusive 
groups. This model is robust, easy to use, and has high pre-
dictive accuracy. There are two objectives of discriminant 
analysis: One is to separate the samples into groups as well 
as possible; The second is to classify new observations as 
belonging to one group or another by using the classifica-
tion functions (Mishra and Datta-Gupta, 2018).

The larger the standardized coefficient indicates a more 
significant contribution of the corresponding variable to 
the discrimination between groups. Therefore, the variable 
with the highest (regression) coefficient contributes most to 
predicting group membership. The analysis calculates one 
discriminant function for each group, and these functions 
are independent by construction, so the discrimination be-
tween groups is not overlapping. The classification table 
shows the result of assigning observed and new cases to a 
group using derived classification rules.

The CM diagram

The CM diagram (Passega, 1957, 1964) is used to es-
tablish the relationships between the sediment textures and 
processes of deposition. Passega (1957) defined M and C as 
the median and the one percentile of the cumulative GSDs, 
respectively. These values can readily be obtained as the 
grain diameters (in mm or micron) belonging to the 50 
and 95 percentiles of the cumulative distribution functions. 
Sometimes it is hard to determine the diameter belonging 
to one percentile based on the laboratory analysis; there-
fore, the D95 percentile is used instead.

The workflow

The workflow involves the calculation of the D50, D95, 
and D5 percentiles from the cumulative grain size distri-
butions, then the decomposition of GSD into clay, very 
fine silt, fine silt, medium silt, coarse silt, and very fine 
sand fractions. These fractions are then transformed by 
applying the additive log ratio transformation (clr) in the 
open source CoDaPack, version 2.02.21. (Aitchison, 1986; 
Egozcue and Pawlowsky-Glahn, 2005). Subsequently, two 
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datasets were compiled for further use. The first dataset 
contained the frequency percentages of the different grain 
size fractions and the diameters belonging to the D5, D50, 
and D95 cumulative percentages of the grain size distri-
butions.

The second contained the clr-transformed percentages 
of the grain size fractions and the D5, D50, and D95 diam-
eters (Fig. 3). The PCA was performed on both datasets. 
The transporting processes were interpreted using the high 
loadings of the most important components. The compo-
nent scores belonging to each sample were used as vari-
ables in the hierarchical cluster analysis (HCA) applying 
Ward’s method (Ward, 1963). Since the clustering method 
relied on the component scores, the resulting clusters are 
supposed to correspond to the different transport processes 
of the fluvial system. This thought was checked by depict-
ing the points of the clusters in the CM diagram (Fig. 5). 
Parallelly, the statistical reality of the clusters was tested by 
the discriminant analysis.

RESULTS AND INTERPRETATION

Results of Principal Component Analysis

The PCA for clr-transformed data has resulted in two 
PCs. The first component described 60.038% of the to-
tal variance, while the second component accounted for 
23.182%. In the case of the non-transformed data, the first 
two components could describe 87.198% of the total vari-
ance (Table 1). The variance explained by the first two PCs 
is large enough for both datasets to base the interpretations 
only on them.

In the case of the non-transformed dataset, the grain 
size fractions belonging to the very fine suspension have 
high positive loadings in PC1. All the coarser grain size 
fractions and the M and C parameters appeared with strong 
negative component loadings in the first PC. The PC2, 
uncorrelated with PC1, has one variable (e.i., medium silt 
fraction (Table 1). The clr-transformed dataset showed that 
the grain sizes from clay to medium silt showed high pos-
itive loadings. In contrast, the coarsest grain size fractions 
showed significantly negative PC loading. The M and C 
change parallelly with the coarse silt fraction in the PC2 
(Table 1).

Results of Cluster Analysis

Both datasets could be subdivided into four clusters. 
Their average compositions are summarized in Table 2.

The average compositional data showed that the fine silt 
medium silty prevails in cluster 4 in both sample sets; the 
medium silt in cluster 3 in the clr-transformed set and clus-
ter 2 in the non-transformed set; the coarse silt in cluster 2 
of the clr-transformed and cluster 1 of the non-transformed 
sets; and in the cluster 1 groups of the clr-transformed data 
and cluster 3 subset of the non-transformed sets medium 
and coarse silts (Table 2).

According to the CM pattern, the studied sediments 
were deposited partly from the RS (Fig. 4a, b) and partly 
from the QR (Fig. 4a, b). Within the QR, three parts can 
be described from fine to coarse; fine-grained, medi-
um-grained, and coarse-grained QR. In Fig. 4, four colors 
code is used to assign the four clusters of the clr-trans-
formed and non-transformed sets. This method was ef-
fective in the identification of transport processes. The 
results showed that the deposits of RS belonged to cluster 
4 in the case of clr-transformed and cluster 3 in the case 
of non-transformed datasets. The sediments of the fine-
grained graded suspension were represented by cluster 
3 and cluster 2 in the clr-transformed and the non-trans-
formed samples, respectively. Cluster 1 of both datasets 
contained the medium-grained QR sediments, while the 

Fig. 3. The workflow of the analyses.

Table. 1 The results of the PCA for the clr-transformed and 
non-transformed datasets. The component loadings larger 

than |0.7| are highlighted.

clr-Transformed Non-Transformed
PC 1 PC 2 PC 1 PC 2

Fractions

Clay 0.929 -0.397 0.955 0.073
Very Fine Silt 0.746 0.288 0.924 0.005
Fine Silt 0.941 0.003 0.997 0.045
Medium Silt 0.290 0.943 0.897 0.236
Coarse Silt -0.934 0.199 -0.448 0.739
Very Fine Sand -0.902 -0.269 -0.898 -0.222

Parameters
D5 -0.847 0.418 -0.781 -0.268
M (= D50) -0.982 0.049 -0.533 0.794
C (= D95) -0.910 -0.185 -0.006 0.914

% of variance 60.038 23.182 71.786 15.412
Cumulative % of variance 60.038 83.22 71.786 87.198
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coarse-grained QR was shown by cluster 2 of the clr-trans-
formed and cluster 4 of the non-transformed datasets (Fig. 
4a, b). It showed that similar suspensions could be identi-
fied in both the clr-transformed and the non-transformed 
sets. In both cases, cluster1 contained the medium-grained 
QR (Fig. 4).

Results of Discriminant Analysis

The relationship between the two classifications and 
the reliability of the clustering is further explained by 
discriminant analysis results (Table 3). The success of 
classifications in both the clr-transformed and non-trans-

Table 2. The average composition of the clusters in the clr-transformed and the non-transformed datasets. The dominant 
fractions are highlighted.

Cluster No. of 
samples Clay

very Fine 
Fine Silt

Medium Coarse Very Fine
Silt Silt Silt Sand

clr-Transformed

Cluster 1 114 11.7 6.9 16.62 29.22 27.01 8.4 Coarse Silty Medium Silt
Cluster 2 81 1.47 6.74 7.69 29.04 41.95 13 Coarse Silt
Cluster 3 98 18.52 8.19 20.11 30.92 21.87 0.38 Medium Silt
Cluster 4 53 25.13 11 22.33 29.22 12.3 0.02 Fine Silty Medium Silt

Non-Transformed

Cluster 1 60 1.38 6.53 7.27 28.89 43.58 12.33 Coarse Silt
Cluster 2 79 9.52 7.6 17.18 32.28 27.64 5.77 Medium Silt
Cluster 3 39 5.65 5.63 10.52 24.38 32.84 20.32 Medium Silty Coarse Silt
Cluster 4 168 21.1 8.97 20.64 29.93 19 0.36 Fine Silty Medium Silt

Table. 3. The discriminant analysis results of the clr-transformed and non-transformed datasets.

clr-Transformed Non-Transformed
Class Percent Cluster 1 Cluster 2 Cluster 3 Cluster 4 Percent Cluster 1 Cluster 2 Cluster 3 Cluster 4

Correct p = .1850 p = .4509 p = .1503 p = .2139 Correct p = .1850 p = .4509 p = .1503 p = .2139
Cluster 1 99.1228 113 1 0 0 95.3125 61 3 0 0
Cluster 2 100 0 81 0 0 100 0 156 0 0
Cluster 3 100 0 0 98 0 73 0 14 38 0
Cluster 4 69.8113 0 0 16 37 95 2 2 0 70
Total 95.0867 113 82 114 37 94 63 175 38 70

Fig. 4. Relations between the clusters and the CM diagrams in (a) the clr-transformed and (b) the non-transformed datasets.
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formed sets was high, 95% and 94%, respectively. That is, 
both classifications were valid from the statistical point 
of view.

Vertical sequence of the identified types of suspensions

In Fig. 5, each sample is assigned to the suspension type 
suggested by Fig. 4 and put back to the actual stratigraphi-
cal order. In that way, the vertical pattern of the temporal 
change of the suspension type is established. In Fig. 4, the 
pattern of QR (Fig. 4a, b) is subdivided into; fine, medium, 
and coarse-grained QR. So, the fining upward (FU), and 
coarsening upward (CU) (Fig. 5) are implied. In that way, 
both vertical sets described a seven step temporal evolu-
tion. In the case of clr-transformed data, the CU sequences 

suggested flooding conditions with gradually increasing 
transport energy. In contrast, these flooding sequences 
were described with relatively thick beds of coarse-grained 
graded suspension (Fig. 5).

Interpretation

The most striking feature of the Tövises bed core is the 
periodic intercalation of the sediments, albeit the core is 
composed of fine grains (clay to very fine silt). This situ-
ation is well expressed in the compositional chart (Fig. 2). 
The CM pattern of the samples suggests that the cyclicity 
can be connected to the intermittently increasing transport 
energy when the coarser grained QR can also appear. In 
these periods, sediments of traction carpet origin were de-

Fig. 5. Vertical sequences of the samples belonging to the different clusters and the identified vertical units of the transport processes.
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posited. So, an oxbow lake environment is probably the 
depositional site. This oxbow lake intermittently could get 
sediment influx from the nearby main channel in the form 
of QR.

In the case of clr-transformed samples, the volume of the 
deposited RS increases with the increasing first background 
process. This process decreases the volume of the deposited 
QR (Table 1, “Transformed,” PC1). This process is probably 
(current free) sedimentation in an oxbow lake environment. 
The second principal component represents such a process. 

Increasing the M and C increases the coarse silt fraction 
(Table 1 “Transformed,” PC1). In the CM diagram, the joint 
increase of M and C describes the QR of the traction carpet 
(Fig. 4). In the clr-transformed dataset, this process affects 
only the coarse silt fraction (Table 1 “Transformed,” PC1). 
In an oxbow lake, two independent depositional processes 
can be outlined. The principal one was the quiet water sed-
imentation of the RS. This sedimentation was temporarily 
interrupted by the loads with traction carpet origin. In these 
periods, coarse silt grains were deposited. This deposition 

Fig. 6. A general summary of the compositional charts and the depositional histories derived from the cluster analysis of the clr-transformed and non-trans-
formed datasets.
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model adds essential detail to the conceptual model: the ox-
bow lake had weak periodic connections with the channel.

For non-transformed data, the first PC describes that 
the decrease of M and C increases the RS deposits and de-
creases the coarser grain sizes (Table 1 “Non-transformed,” 
PC1). PC1 describes the sedimentation from a traction car-
pet under decreasing mean flow velocity as the principal 
process of the deposition. There is only one grain size class 
in the second PC with large positive loading, i.e., the me-
dium silt fraction is (Table 1 “Non-transformed,” PC2). The 
critical consequence of this depositional model is that the 
deposition was controlled by traction flows with decreasing 
energy. This model supplement assumes that the oxbow 
lake had a permanent but weak connection with the main 
channel. During the flooding periods, this weak connec-
tion became stronger.

The applied CA gave a possibility to define units of the 
depositional history. Seven depositional events could be 
described (Fig. 5). The results showed that in the case of 
the clr-transformed dataset, the seven units corresponded 
to seven mainly CU cycles. This situation may suggest 
that the units can be connected to the periodic connection 
between the oxbow lake and the main channel. For the 
non-transformed dataset, there are seven units character-
ized by FU cycles (Fig. 5). In this case, the cycles can be 
drawn back to the periodically decreasing energy of the 
almost permanent weak traction flows in the oxbow lake 
system. The situation assumes a permanent but weak con-
nection with the adjacent channel. Fig. 6 connects these two 
results with the compositional diagram of the cores.

DISCUSSION

This paper aims to explain the utility of centered log 
ratio transformation, euclidean data analysis, and multi-
variate methods in characterizing the compositional grain 
size data. The advantage of using clr-transformed and 
non-transformed datasets coupled with multivariate sta-
tistics (PCA, CA, and LDA) is that the entire GSD is con-
sidered in the analysis, unlike applying only the individual 
size fractions.

The first sediments to be deposited after cut off from 
the main channel are a plug of channel sands at each end of 
the oxbow lake. The exchange of water and sediments be-
tween the oxbow lake and the active channel is maintained 
through a narrow channel (Rowland and Dietrich, 2006). 
These narrow channels (known as the Tie channel) develop 
during lake formation (Blake and Ollier, 1971). Oxbow 
lake can receive relatively fine sediment transported as 
suspension onto the floodplain (Allen, 1970). Therefore, 
the oxbow lake sediments consist of silt, clay, and coarser 
sediments. The water enters the lake when the river is ac-
tive, and the lake level is below the river and during a flood. 
Characterizing this variability and processes through data 
decomposition into dimensionally reduced components en-
ables maximal variance to be retained using PCA. PCA 
applied to the clr-transformed data discovered that the first 

and second PCs characterize 60% and 23% of the variance, 
respectively (Table 1). Correspondingly, for non-trans-
formed data, 71% and 15% of the variance are explained 
by the first and second PC variances, respectively (Table 1).

The following substantial question is how this con-
ceptual model interprets the results from analyzing the 
clr-transformed and the non-transformed datasets. In the 
interpretation of PCA, the PCs are regarded as independent 
background processes. A particular background process 
significantly influences the variables with high compo-
nent loadings (high positive or small negative numbers). 
The sign of the component loadings describes whether the 
increasing background process increases (positive sign) or 
decreases (negative sign) of the affected variables. In the 
case of the clr-transformed data, the very fine suspension 
sediments (clay, very fine silt, and fine silt) have high posi-
tive loadings in PC1. All the coarser grains sizes and the M 
and C parameters have high negative loadings in the first 
PC. The PC2, which is uncorrelated with PC1, had only 
one important variable, the medium silt fraction (Table 1) 
suggested that the oxbow lake had periodic (during floods) 
connections with the main channel. The non-transformed 
data showed that the grain sizes from clay to medium silt 
had high positive loadings, while the coarser grain sizes 
showed a significantly negative PC loading. The M and C 
parameters and coarse silt fraction show positive loadings 
in PC2 (Table 1), indicating that the oxbow lake had a per-
manent but weak connection with the main channel, prob-
ably, through a Tie channel. During the flooding periods, 
this weak connection became strong.

The CA applied for the principal component scores of 
both datasets revealed four groups. The validation of the 
clustering results poses some difficulties as the clustering 
itself (Pfitzer et al., 2009). There are ‘internal’ and ‘external’ 
methods to the evaluations, but they have a lot of uncertainty 
(Feldman and Sanger, 2007). However, the classification is 
statistically valid as the LDA indicates a high total percent 
corrects for clr-transformed and non-transformed datasets, 
95% and 94%, respectively (Table 3). The sedimentological 
criteria used to judge the efficacy of these models is the CM 
diagram (Fig. 3). Accordingly, the clustering of the clr-trans-
formed data was inefficient in generating a distinct bound-
ary between deposition by QR and the deposition by the RS 
(Fig. 4a), as cluster 4 is presented as deposition of RS and 
QR. Therefore, the two approaches can be applied in similar 
situations where the sedimentological and geological criteria 
can assess the validity and test their efficacy.

CONCLUSIONS

This paper represents a methodology framework for 
characterizing the GSDs through the centered log ratio 
transformation, euclidean data analysis approaches, and 
multivariate statistics. The presented methodologies elimi-
nate challenges caused by the closed dataset with PCA ex-
tracting the maximum variance present. This variance was 
studied through CA and LDA. The study revealed that the 
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deposition occurred as RS and QR loads in multiple stages 
interrupted with bottom current loads.

The CA applied for the PC scores of both datasets re-
vealed fours groups of sequences. The vertical sequence 
can be subdivided into seven genetic units with similar 
boundaries. However, in the case of the clr-transformed 
dataset, they corresponded to mainly CU, suggesting the 
periodic connection between the oxbow lake and the main 
channel. Contrary to the clr-transformed dataset, the seven 
units of non-transformed data are characterized by FU cy-
cles, indicating the permanent weak traction flows with 
periods of decreasing energy in the oxbow lake system. The 
situation assumes a permanent but weak connection with 
the main channel.

This finding demonstrates a great potential for applying 
clr transformation, and Euclidean data analysis approaches 
coupled with PCA, CA, and LDA to characterize the GSD 
and interpret oxbow lakes’ deposition and sedimentation 
processes. The results are statistically significant and sed-
imentologically interpretable for both datasets. However, 
the details by which they supplemented the conceptual 
model are significantly different, resulting in a different 
temporal model of the depositional history. Therefore, the 
reliability of the models derived from such methods must 
be cross-checked with sedimentological and geological cri-
teria as they cannot guarantee a meaningful result.
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